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Abstract:  A macrocyclic polyether bridged by 2,2'-bipyridine group was synthesized and found to 
exhibit a very high Ag + ion selectivity compared to heavy metal ions in transport through an organic 
liquid membrane. © 1997 Elsevier Science Ltd. 

Incorporation of a sulfur atom and a heterocyclic moiety into a macrocyclic ring or a rim of the cavity 

enhances the Ag + binding preference.l-6 Control of the selective Ag + recognition was achieved using 

macrocycles containing thiol and disulfide groups prepared by the redox reactions. 5 The drastic change of the 

selectivity due to these simple modifications is of great interest for fundamental studies of host-guest chemistry. 

In addition, the high Ag + selectivity is important and necessary for technological applications such as 

photographic technology, recovery of Ag + from waste water, and 11 lAg_base d radioimmunotherapy.6 Here we 

wish to report the synthesis of  the bicyclic host 1 bearing a 2,2'-bipyridine moiety and its very high Ag + 

selectivity in cation transport through a liquid membrane. 
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The diol 6 was prepared from the tribromide 5 and triethylene glycol, treating 6 with 5 gave the cyclic 

dibromide 7 (Scheme 1). 7 Dilithiation of 7 and treatment with elemental sulfur afforded the dithiol macrocycle 

4. Dithiol 4 was reacted with dibromide 8 in THF to give 2,2'-bipyridine-bridged host 1 in 61% yield. The 
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hosts 2 and 3 were obtained in a similar way, namely, via the reactions of 4 with triethylene glycol ditosylate 

and 1-(p-toluenesulfonoxy)-2-(methoxy)ethane, respectively. 

Scheme 1. Synthesis of hosts (1-4) 
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Cation transport through a liquid membrane (1,2-dichloroethane layer) using a dual cylindrical cell 8 

showed that dithiol 4 transports Ag + selectively (Table 1). A small amount of Pb 2+ transported was the only 

other ion detected among heavy metal ions examined by atomic absorption spectroscopy. In the bipyridine host 

1, extremely high Ag ÷ selectivity was achieved. The transport rate of Ag + is much higher (ca. 4 fold) than for 

4. Moreover, Pb 2+ was not observed in the receiving phase within the experimental errors. The other cations 

(Mn 2÷, Co 2÷, Ni 2+, Cu 2+, Zn 2+, Cd 2+) were not carried at all as in the case of 4. In the case of an acidic 

solution of AgNO3 in aq HNO3 (0.1 mol dm -3) employed as an source phase, the amount of transported Ag + 

was reduced compared to an aqueous solution of AgNO3 in deionized water, although the difference between 

the chemical potentials of the source and receiving phases increased under the acidic conditions. These results 

strongly suggest that the nitrogen atoms of the bipyridine nucleus in 1 participate in binding and transporting 

Ag ÷. However, the macrocyclic host 3 containing two sulfide groups exhibits almost no ability for efficient or 

selective cation transport. In contrast, the bicyclic host 2 shows a relatively high Ag ÷ selectivity comparable to 
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that of 4, but has no ability to Pb 2+ 

transport. Hence, the thiol groups of  4 

play a considerably important role in the 

transport of  Ag +. In 2 the bicyclic 

structure consisting of  three polyether 

chains and sulfur atoms are more 1 

favorable for the Ag + se lect iv i ty .  
1 b 

Similarly, the remarkably high Ag + 

preference of 1 is probably due to both 2 

the bicycl ic  structure and effect ive 

coordination of  the bipyridine to Ag +. 3 

I H N M R  ti trat ion unambiguous ly  

indica ted  the s t rong and a lmost  4 

quan t i t a t ive  coo rd ina t ion  o f  the 

bipyridine to Ag + in a 1:1 complexation 

stoichiometry. In the presence of one 

equivalent of  Ag + downfield shifts of 

protons located in the pyridine rings 

were observed (from 7.4 -7.5 ppm to 8.07 (d, 

J = 8 Hz) and 7.92 (t, J = 8 Hz) ppm in 

CDC13-CD3CN (9 : 1, v/v)). In aliphatic 

protons of the polyether chains, complexation 

gave rise to distinct shifts to a lower field, x~E 

probably indicating interactions between the 

polyether groups with Ag +. 

Addi t ion  of  AgNO3 to 1 caused a 

bathochromic shift in uv-vis spectra from kmax 

285 and 295 nm to 306 nm with a isosbestic " 

point at 302 nm, consistent with the conversion 

of the free 1 to the Ag + complex without any 

intermediate. 

The stability constant (Ka) of 1 and Ag + 

was determined by spectral changes at 327 nm 

with a non-linear-least-square method to be Ka 

of (2.5 + 0.3)x104 dm 3 mo1-1 in CH3CN. Job 

plots using the absorbances at 327 nm also 

reveals the 1:1 complexation (Figure 1). 

Table 1. Single ion transport for heavy metal ions a 

Cone. of Metal Ion in the Receiving Phase ( x 10 s mol dm "3 ) 
Host 

Ag + Mn 2+ Co 2+ Ni 2+ Cu 2+ Zn 2+ Cd 2+ pb 2+ 

62.7' 0 0 0 0 0 0 0 

51.8  

16.0 0 0 0 0 0 0 0 

1.8 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 1.3 

aThe values were determined after 24 h. source phase (Metal Nitrate (0.01 
tool dm "3) in dist. H20 (4 cm3). receiving phase (dist. H20, 50 cm3). 
organic phase (host ( 2 x 10 "4 mol dm "3) in CH2C1CH2CI, 50 cm3). 25 °C, 
stirring rate: 200 rpm. b AgNO 3 in 0.1 mol dm "3 HNO 3 
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Figure 1. Job plots of 1-Ag +. [ 1 ] + [ AgNO 3 ] 

= 1.0 x 10 4 mol dm -3, ~bs = 327.0 nm, CHaCN, 25°C 

The bipyridine macrocycle 1 shows a high Ag + transport selectivity obviously due to the coordination of 

the bipyridine ring and its bicyclic structure. We are currently preparing crystals of 1-Ag + for X-ray 

crystallography to clarify the geometry of the ligand and to increase binding strength for practical applications. 
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